Basic Math Examples

Simplify (3c^2-5c-2)/(6c^2)*(4c^2-8c)/(c^2-4c+4)
Step 1
Factor by grouping.
Tap for more steps...
Step 1.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Tap for more steps...
Step 1.1.1
Factor out of .
Step 1.1.2
Rewrite as plus
Step 1.1.3
Apply the distributive property.
Step 1.1.4
Multiply by .
Step 1.2
Factor out the greatest common factor from each group.
Tap for more steps...
Step 1.2.1
Group the first two terms and the last two terms.
Step 1.2.2
Factor out the greatest common factor (GCF) from each group.
Step 1.3
Factor the polynomial by factoring out the greatest common factor, .
Step 2
Factor out of .
Tap for more steps...
Step 2.1
Factor out of .
Step 2.2
Factor out of .
Step 2.3
Factor out of .
Step 3
Factor using the perfect square rule.
Tap for more steps...
Step 3.1
Rewrite as .
Step 3.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 3.3
Rewrite the polynomial.
Step 3.4
Factor using the perfect square trinomial rule , where and .
Step 4
Simplify terms.
Tap for more steps...
Step 4.1
Combine.
Step 4.2
Cancel the common factor of and .
Tap for more steps...
Step 4.2.1
Factor out of .
Step 4.2.2
Cancel the common factors.
Tap for more steps...
Step 4.2.2.1
Factor out of .
Step 4.2.2.2
Cancel the common factor.
Step 4.2.2.3
Rewrite the expression.
Step 4.3
Cancel the common factor of and .
Tap for more steps...
Step 4.3.1
Factor out of .
Step 4.3.2
Cancel the common factors.
Tap for more steps...
Step 4.3.2.1
Factor out of .
Step 4.3.2.2
Cancel the common factor.
Step 4.3.2.3
Rewrite the expression.
Step 4.4
Cancel the common factor of and .
Tap for more steps...
Step 4.4.1
Factor out of .
Step 4.4.2
Cancel the common factors.
Tap for more steps...
Step 4.4.2.1
Factor out of .
Step 4.4.2.2
Cancel the common factor.
Step 4.4.2.3
Rewrite the expression.
Step 4.5
Cancel the common factor of .
Tap for more steps...
Step 4.5.1
Cancel the common factor.
Step 4.5.2
Rewrite the expression.
Step 4.6
Move to the left of .